电子课本网 第40页

第40页

信息发布者:
组成圆心角的两条半径
圆心角所对的弧
$l = \frac{n\pi R}{180}$
$S = \frac{n\pi R^{2}}{360}$
$S = \frac{1}{2}lR$
B
B
$\pi$
$8 - 2\pi$
解:(1)连接$OB,$$OC。$
因为$\angle BOC = 2\angle A,$$\angle A = 45^{\circ},$所以$\angle BOC = 90^{\circ}。$
因为$\odot O$的直径为$2,$所以$OB = OC = 1。$
所以$\overset{\frown}{BC}$的长$=\frac{90\times\pi\times1}{180}=\frac{\pi}{2}。$
(2)$S_{涂色部分}=S_{扇形OBC}-S_{\triangle OBC}=\frac{90\pi\times1^{2}}{360}-\frac{1}{2}\times1\times1=\frac{\pi}{4}-\frac{1}{2}。$