解 :$(2)$方程$ax + by = c $与它的$“$交换系数方程$”$
组成的方程组为$\begin {cases}ax + by = c\\cx + by = a\end {cases}$或$\begin {cases}ax + by = c\\ax + cy = b\end {cases}。$
$ $当$a + b + c = 0$时,
对于$\begin {cases}ax + by = c\\cx + by = a\end {cases},$解得:$\begin {cases}{x=-1}\\{y=-1}\end {cases}$
$ $对于$\begin {cases}ax + by = c\\ax + cy = b\end {cases},$解得:$\begin {cases}{x=-1}\\{y=-1}\end {cases}$
$ $把$\begin {cases}x=-1\\y =-1\end {cases}$代入$mx+ny = p,$得$-(m + n)=p。$
$ $所以$(m + n)m-p(n + p)+2025$
$=-pm-pn-p^2+2025$
$=-p(m + n)-p^2+2025$
$=(-p)^2-p^2+2025 $
$= 2025$
$ (3)(1 + n)x+2025y = 2m + 2$的$“$交换系数方
程$”$为$(2m + 2)x+2025y = 1 + n$或
$(1 + n)x+(2m + 2)y = 2025。$
$ $因为$(10m - t)x+2025y = m + t $是关于$x,y$的二
元一次方程$(1 + n)x+2025y = 2m + 2$的$“$交换
系数方程”,
所以当$(10m - t)x+2025y = m + t $各系数与
$(2m + 2)x+2025y = 1 + n$各系数对应相等时,
得$\begin {cases}10m - t=2m + 2\\m + t=1 + n\end {cases},$解得:$\begin {cases}{m=\dfrac {t+2}8}\\{n=\dfrac {9t-6}8}\end {cases}$
∵$t<n<8m,$
∴$t<\frac {9t−6}{8}<1+2,$解得$6<1<22(t $为整数$).$
∴$8<1+2<24,$
∴若$m=\frac {t+2}{8}$为整数$,$必须有$t+2=16,$此时
$m=2.$
∴$t=14.$
当$t=14$时$,n=\frac {9t−6}{8}=\frac {9×14−6}{8}=\frac {126−6}{8}$
$=\frac {120}{8}=15,$符合题意
∴$m=2$
$ $当$(10m - t)x+2025y = m + t $各系数与
$(1 + n)x+(2m + 2)y = 2025$各系数对应相等时,
得$\begin {cases}10m - t=1 + n\\2025=2m + 2\\m + t=2025\end {cases},$
解得$m=\frac {2023}{2}($不是整数,舍去)。
综上,$m = 2。$