解:$(1) $因为$ BO_{1},CO_{1} $分别平分$ ∠ABC,$
$∠ACB ,$
所以$ ∠ABC = 2∠O_{1}BC ,$$ ∠ACB = 2∠O_{1}CB ,$
所以$ 2(∠O_{1}BC+∠O_{1}CB)=∠ABC+∠ACB 。$
因为$ ∠A=α,$
所以$ ∠ABC+∠ACB = 180°-α,$
所以$ ∠BO_{1}C = 180°-(∠O_{1}BC+∠O_{1}CB)$
$=180°-\frac {1}{2}(180°-α)=90°+\frac {1}{2}α。$
$(2) $因为$ ∠ABC,∠ACB $的两条三等分线分别对应
交于$ O_{1},O_{2} ,$
所以$ ∠O_{2}BC=\frac {2}{3}∠ABC ,$$ ∠O_{2}CB=\frac {2}{3}∠ACB ,$
所以$ ∠O_{2}BC+∠O_{2}CB=\frac {2}{3}∠ABC+\frac {2}{3}∠ACB$
$=\frac {2}{3}(∠ABC+∠ACB)=\frac {2}{3}(180°-α) ,$
所以$ ∠BO_{2}C = 180°-(∠O_{2}BC+∠O_{2}CB)$
$=180°-\frac {2}{3}(180°-α)=60°+\frac {2}{3}α。$