证明:$(1)$因为$FA = FE,$
所以$∠FAE = ∠AEF。$
因为$\overset {\frown }{BF}=\overset {\frown }{BF},$
所以$∠FAE = ∠BCE。$
因为$∠AEF = ∠CEB,$
所以$∠CEB = ∠BCE。$
因为$CE$平分$∠ACD,$
所以$∠ACE = ∠DCE。$
因为$AB$是$\odot O$的直径,
所以$∠ACB = 90°,$即$∠BCE+∠ACE = 90°,$
所以$∠CEB+∠DCE = 90°。$
因为$\triangle CDE$的内角和为$180°,$
所以$∠CDE = 90°,$
所以$CD\perp AB。$
$(2)$由$(1)$知,$∠BEC = ∠BCE,$
所以$BE = BC。$
因为$OM = OE = 1,$
所以$ME = OM + OE = 2。$
因为$AF = EF,$$FM\perp AB,$
所以$MA = ME = 2,$
所以$AE = 4,$
所以$OA = OB = AE - OE = 3,$
所以$BC = BE = OB - OE = 2,$$AB = OA + OB = 6。$
在$Rt\triangle ABC$中,$AC=\sqrt {AB^2-BC^2}=\sqrt {6^2-2^2} = 4\sqrt {2}。$