解:$(1)$如图,设$AC、$$BD$交于点$E。$
$ $因为$AC\perp BD,$
所以$∠AED = 90°。$
$ $因为$BC// AD,$
所以$∠DBC=∠ADB。$
$ $因为$\overset {\frown }{CD}=\overset {\frown }{CD},$根据同弧所对的圆周角相等,
所以$∠DBC=∠DAC,$
所以$∠ADB=∠DAC。$
$ $在$Rt\triangle AED$中,$∠ADB=∠DAC = 45°。$
$ $因为$OA = OD,$所以$∠OAD=∠ODA。$
$ $在$\triangle OAD$中,$∠AOD = 120°,$
根据三角形内角和为$180°,$可得$∠OAD=\frac {180°-∠AOD}{2}=\frac {180°-120°}{2}=30°,$
所以$∠CAO=∠DAC-∠OAD = 45°-30°=15°。$
$(2)$如图,连接$OB、$$OC,$过点$O$作$OH\perp AD,$垂足为$H。$
$ $因为$OA = OD,$$OH\perp AD,$根据等腰三角形三线合一,
所以$AH=\frac {1}{2}AD=\frac {\sqrt {3}}{2}。$
$ $在$Rt\triangle OHA$中,$∠OAH = 30°,$所以$OH=\frac {1}{2}OA。$
$ $在$Rt\triangle OHA$中,由勾股定理$OH^2+AH^2=OA^2,$即$(\frac {1}{2}OA)^2+(\frac {\sqrt {3}}{2})^2=OA^2,$
$ $设$OA=x,$则$\frac {1}{4}x^2+\frac {3}{4}=x^2,$
$ \frac {3}{4}=x^2-\frac {1}{4}x^2,$
$ \frac {3}{4}=\frac {3}{4}x^2,$
$ $解得$x = 1($负值舍去$),$所以$OA = 1。$
$ $因为$\overset {\frown }{CD}=\overset {\frown }{CD},$
所以$∠COD = 2∠DAC = 90°。$
同理,得$∠AOB = 90°。$
$ $因为$∠AOD = 120°,$
所以$∠BOC=360°-90°-90°-120°=60°。$
$ $因为$OB = OC,$
所以$\triangle OBC$是等边三角形,所以$BC = OB。$
$ $因为$OB = OA = 1,$
所以$BC = 1。$