解:如图,过点$A$作$AD⊥BC,$垂足为$D。$
∵$AB = AC = 5,$$AD⊥BC,$$BC = 6,$
∴易得点$O$在直线$AD$上,$BD = \frac {1}{2}BC = 3,$
∴在$Rt△ABD$中,$AD = \sqrt {AB^2-BD^2} = 4。$
$ $当点$O₁$在$AD$的反向延长线上时,连接$O₁B。$
∵$O₁D = AD + AO₁ = 4 + 3 = 7,$
∴在$Rt△O₁BD$中,$O₁B = \sqrt {O_{1}D^2+BD^2} = \sqrt {7^2+3^2} = \sqrt {58}。$
$ $当点$O₂$在线段$AD$上时,连接$O₂B。$
∵$O₂D = AD - AO₂ = 4 - 3 = 1,$
∴在$Rt△O₂BD$中,$O₂B = \sqrt {O_{2}D^2+BD^2} = \sqrt {1^2+3^2} = \sqrt {10}。$
综上所述,$⊙O$的半径为$\sqrt {58}$或$\sqrt {10}。$