解:如图,过点$O$分别作$OH\perp BC、$$OK\perp BD,$垂足依次为$H、$$K.$
∵$OK\perp BD,$$OK$经过圆心,
∴$∠OKB = 90°,$$BD = 2BK.$
∵$BD = 2OE,$
∴$OE = BK.$
∵$OB = OC,$$OH\perp BC,$
∴$∠BOC = 2∠BOH,$$∠OHB = 90°,$
∴在$Rt\triangle OHB$中,$∠BOH+∠OBH = 90°.$
∵$∠BOC = 2∠BCE,$
∴$∠BOH=∠BCE,$
∴$∠BCE+∠OBH = 90°,$
∴$∠OEC=∠BCE+∠OBH = 90°.$
在$Rt\triangle OEC$和$Rt\triangle BKO$中,
$\begin {cases}OC = BO\\OE = BK\end {cases},$
∴$Rt\triangle OEC\cong Rt\triangle BKO,$
∴$∠COE=∠OBK,$
∴$BD// OC$