解:连接$OB.$
∵$AC$是$\odot O$的直径,弦$BD\perp AO$于点$E,$$BD = 8\ \mathrm {cm},$
∴$BE=\frac {1}{2}BD = 4\ \mathrm {cm}.$
设$\odot O$的半径为$x\mathrm {cm},$
则$OB = OA = x\mathrm {cm},$$OE=(x - 2)\mathrm {cm}.$
在$Rt\triangle OEB$中,由勾股定理,得$OE^2+BE^2=OB^2,$
即$(x - 2)^2+4^2=x^2,$
$ $展开式子得$x^2-4x + 4+16=x^2,$
$ $移项可得$-4x=-20,$
$ $解得$x = 5.$
∴$\odot O$的半径为$5\ \mathrm {cm},$
∴$EC=2×5 - 2 = 8(\mathrm {cm}),$
∴在$Rt\triangle BEC$中,$BC=\sqrt {BE^2+EC^2}=\sqrt {4^2+8^2} = 4\sqrt {5}(\mathrm {cm}).$
∵$OF\perp BC,$$OF{过圆心},$
∴$CF=\frac {1}{2}BC = 2\sqrt {5}\mathrm {cm},$
∴在$Rt\triangle OFC$中,$OF=\sqrt {OC^2-CF^2}=\sqrt {5^2-(2\sqrt {5})^2}=\sqrt {25 - 20}=\sqrt {5}(\mathrm {cm})$