证明:$(1)$如图,连接$OC。$
∵$ C$是$\overset {\frown }{ACB}$的中点,
∴$ \overset {\frown }{AC}=\overset {\frown }{BC},$
根据在同圆或等圆中,相等的弧所对的圆心角相等,可得$∠COD = ∠COE。$
∵$ OA = OB,$$AD = BE,$
∴$ OA - AD = OB - BE,$即$OD = OE。$
又∵$ OC = OC,$
$ $在$△COD$和$△COE$中,
$ \begin {cases}OD = OE\\∠COD=∠COE\\OC = OC\end {cases}$
$ $根据$SAS($边角边$)$判定定理,可得$△COD≌△COE,$
∴$ CD = CE。$
$ (2)$证明:
如图,连接$OM、$$ON。$
∵$ △COD≌△COE,$
∴$ ∠CDO = ∠CEO,$$∠OCD = ∠OCE。$
∵$ OC = OM = ON,$
∴$ ∠OCM = ∠M,$$∠OCN = ∠N,$
∴$ ∠M = ∠N。$
∵$ ∠CDO = ∠M + ∠MOD,$$∠CEO = ∠N + ∠NOE,$
∴$ ∠MOD = ∠NOE,$
根据在同圆或等圆中,相等的圆心角所对的弧相等,可得$\overset {\frown }{AM}=\overset {\frown }{BN}。$