证明:∵$ $四边形$ABCD$是正方形,
∴$ AB = CD,$
根据在同圆或等圆中,相等的弦所对的劣弧相等,可得$\overset {\frown }{AB}=\overset {\frown }{CD}。$
∵$ M$为$\overset {\frown }{AD}$的中点,
∴$ \overset {\frown }{AM}=\overset {\frown }{DM},$
∴$ \overset {\frown }{AB}+\overset {\frown }{AM}=\overset {\frown }{CD}+\overset {\frown }{DM},$即$\overset {\frown }{BM}=\overset {\frown }{CM}。$
根据在同圆或等圆中,相等的弧所对的弦相等,可得$BM = CM。$