解:设矩形两邻边的长分别为$x_{1}、$$x_{2}. $
由根与系数的关系,可知$x_{1} + x_{2} = k + 1,$$x_{1}x_{2}=\frac {1}{4}k^2 + 1. $
由方程有两个根,可知$b^2 - 4ac=[-(k + 1)]^2 - 4(\frac {1}{4}k^2 + 1)=2k - 3\geq 0,$
解得$k\geq \frac {3}{2}. $
又∵矩形的对角线的长为$\sqrt {5},$
∴由勾股定理,得$x_{1}^2 + x_{2}^2 = (\sqrt {5})^2,$
即$(x_{1} + x_{2})^2 - 2x_{1}x_{2} = 5,$
∴$(k + 1)^2 - 2(\frac {1}{4}k^2 + 1)=5. $
整理,得$k^2 + 4k - 12 = 0,$
因式分解得$(k - 2)(k + 6)=0,$
解得$k_{1} = 2,$$k_{2} = -6($不合题意,舍去).
∴$k$的值为$2.$