电子课本网 第28页

第28页

信息发布者:
C
B
3
10
解:(1)对于一元二次方程$x^{2}+2x + 3 - k = 0,$其中$a = 1,$$b = 2,$$c = 3 - k。$
根据根的判别式$\Delta=b^{2}-4ac,$可得$\Delta = 2^{2}-4\times1\times(3 - k)=4 - 12 + 4k=-8 + 4k。$
因为原方程有两个不相等的实数根,所以$\Delta>0,$即$-8 + 4k>0,$
移项可得$4k>8,$解得$k>2。$
(2)因为方程的两个实数根分别为$\alpha$、$\beta,$由韦达定理可知$\alpha\beta = 3 - k。$
又因为$k^{2}=\alpha\beta + 3k,$所以$k^{2}=3 - k + 3k,$
整理得$k^{2}-2k - 3 = 0,$
因式分解得$(k - 3)(k + 1)=0,$
则$k - 3 = 0$或$k + 1 = 0,$
解得$k_{1}=3,$$k_{2}=-1。$
因为$k>2,$所以$k = - 1$不合题意,舍去。
所以$k$的值为$3。$
解:因为关于$x$的一元二次方程$x^{2}-2mx + m^{2}-4m - 1 = 0$有两个实数根$x_{1}$、$x_{2},$
所以$\Delta=b^{2}-4ac=(-2m)^{2}-4\times1\times(m^{2}-4m - 1)\geqslant0,$
即$4m^{2}-4m^{2}+16m + 4\geqslant0,$
化简得$16m+4\geqslant0,$
移项得$16m\geqslant - 4,$
解得$m\geqslant-\frac{1}{4}。$
由韦达定理得$x_{1}x_{2}=m^{2}-4m - 1,$$x_{1}+x_{2}=2m。$
因为$(x_{1}+2)(x_{2}+2)-2x_{1}x_{2}=17,$
展开得$x_{1}x_{2}+2x_{1}+2x_{2}+4 - 2x_{1}x_{2}=17,$
即$2(x_{1}+x_{2})-x_{1}x_{2}=13,$
将$x_{1}x_{2}=m^{2}-4m - 1,$$x_{1}+x_{2}=2m$代入得$4m-(m^{2}-4m - 1)=13,$
去括号得$4m - m^{2}+4m + 1 = 13,$
整理得$m^{2}-8m + 12 = 0,$
因式分解得$(m - 2)(m - 6)=0,$
则$m - 2 = 0$或$m - 6 = 0,$
解得$m_{1}=2,$$m_{2}=6。$
因为$m\geqslant-\frac{1}{4},$
所以满足题意的$m$的值为$2$或$6。$
D