解:设运动时间为$ts,$显然$0\leq t\leq 3.$
$(1)$过点$Q_{作}QE\perp AB$于点$E,$过点$A$作$AF\perp CD$于点$F.$
∵$AB// CD,$$∠C = 90°,$$AF\perp CD,$$QE\perp AB,$
∴易得四边形$AFCB$和四边形$AFQE$都为矩形$.$
∵$CD = 10\ \mathrm {cm},$$AB = 6\ \mathrm {cm},$∴$CF = 6\ \mathrm {cm},$则$DF = 4\ \mathrm {cm}.$
∵$AD = 5\ \mathrm {cm},$
∴在$Rt\triangle ADF_{中},$根据勾股定理$AF=\sqrt {AD^2-DF^2}=\sqrt {5^2-4^2}=\sqrt {25 - 16}=3\ \mathrm {cm},$
∴$EQ = AF = 3\ \mathrm {cm}.$
∵$AP = 2t\mathrm {cm},$$CQ = t\mathrm {cm},$
∴易得$PE=(6 - 3t)\mathrm {cm}_{或}PE=(3t - 6)\mathrm {cm}.$
$ $在$Rt\triangle PEQ_{中},$∵$PE^2+EQ^2=PQ^2,$
∴$(6 - 3t)^2+3^2=5^2,$
$ 36-36t + 9t^2+9 = 25,$
$ 9t^2-36t + 20 = 0,$
$ $对于一元二次方程$ax^2+bx + c = 0(a\neq 0),$这里$a = 9,$$b = - 36,$$c = 20,$
$ $根据求根公式$x=\frac {-b\pm \sqrt {b^2-4ac}}{2a},$可得
$t=\frac {36\pm \sqrt {(-36)^2-4×9×20}}{2×9}=\frac {36\pm \sqrt {1296 - 720}}{18}=\frac {36\pm \sqrt {576}}{18}=\frac {36\pm 24}{18},$
$ $解得$t_{1}=\frac {36 + 24}{18}=\frac {10}{3},$$t_{2}=\frac {36 - 24}{18}=\frac {2}{3},$
$ $因为$0\leq t\leq 3,$所以$t_{2}=\frac {2}{3}$符合题意,$t_{1}=\frac {10}{3}$不合题意,舍去.
答:经过$\frac {2}{3}s,$点$P、$$Q $之间的距离为$5\ \mathrm {cm}.$
$ (2)$不存在$.$
理由:假设存在某一时刻,使得$PD$恰好平分$∠APQ,$则$∠APD=∠DPQ.$
∵$AB// CD,$∴$∠APD=∠PDQ,$
∴$∠PDQ=∠DPQ,$∴$DQ = PQ.$
∵$PQ^2=[3^2+(6 - 3t)^2]\mathrm {cm}²,$$DQ^2=(10 - t)^2\ \mathrm {cm}²,$
∴$3^2+(6 - 3t)^2=(10 - t)^2,$
$ 9 + 36-36t + 9t^2=100-20t + t^2,$
$ 9t^2-t^2-36t + 20t+9 + 36 - 100 = 0,$
$ 8t^2-16t - 55 = 0,$
$ $对于一元二次方程$ax^2+bx + c = 0(a\neq 0),$这里$a = 8,$$b = - 16,$$c = - 55,$
$ $根据求根公式$t=\frac {-b\pm \sqrt {b^2-4ac}}{2a}=\frac {16\pm \sqrt {(-16)^2-4×8×(-55)}}{2×8}=\frac {16\pm \sqrt {256 + 1760}}{16}=\frac {16\pm \sqrt {2016}}{16}=\frac {16\pm 12\sqrt {14}}{16}=\frac {4\pm 3\sqrt {14}}{4},$
∵$0\leq t\leq 3,$上述两解均不合题意,舍去,
∴不存在某一时刻,使得$PD$恰好平分$∠APQ.$