电子课本网 第13页

第13页

信息发布者:
0.618
6或-4
$\frac{1 - \sqrt{13}}{2}$
解:对于方程​$y^2+2\sqrt {2}y = 6,$​化为一般式为
​$y^2+2\sqrt {2}y - 6 = 0,$​
其中​$a = 1,$​​$b = 2\sqrt {2},$​​$c = -6,$​
​$b^2-4ac=(2\sqrt {2})^2-4×1×(-6)=8 + 24 = 32。$​
则​$y=\frac {-2\sqrt {2}\pm \sqrt {32}}{2×1}=\frac {-2\sqrt {2}\pm 4\sqrt {2}}{2},$​
所以​$y_{1}=\frac {-2\sqrt {2}+4\sqrt {2}}{2}=\sqrt {2},$​​$y_{2}=\frac {-2\sqrt {2}-4\sqrt {2}}{2}=-3\sqrt {2}。$​
解:将方程​$(2x + 1)(x - 1)=8(9 - x)-1$​展开
并化为一般式:​$2x^2-2x+x - 1 = 72 - 8x - 1,$​
即​$2x^2+7x - 72 = 0,$​
其中​$a = 2,$​​$b = 7,$​​$c = -72,$​
​$b^2-4ac=7^2-4×2×(-72)=49 + 576 = 625。$​
则​$x=\frac {-7\pm \sqrt {625}}{2×2}=\frac {-7\pm 25}{4},$​
所以​$x_{1}=\frac {-7 + 25}{4}=\frac {9}{2},$​​$x_{2}=\frac {-7 - 25}{4}=-8。$​
解:将方程​$(x + 1)^2-2(x - 1)^2=7$​展开并化为
一般式:​$x^2+2x + 1-2(x^2-2x + 1)=7,$​
​$x^2+2x + 1-2x^2+4x - 2 = 7,$​
即​$-x^2+6x - 8 = 0,$​
两边同时乘以​$-1$​得​$x^2-6x + 8 = 0,$​
其中​$a = 1,$​​$b = -6,$​​$c = 8,$​
​$b^2-4ac=(-6)^2-4×1×8 = 36 - 32 = 4。$​
则​$x=\frac {-(-6)\pm \sqrt {4}}{2×1}=\frac {6\pm 2}{2},$​
所以​$x_{1}=\frac {6 + 2}{2}=4,$​​$x_{2}=\frac {6 - 2}{2}=2。$​
解:将方程​$1 - t^2=2t(2t - 1)$​展开并化为一般式:
​$1 - t^2=4t^2-2t,$​即​$5t^2-2t - 1 = 0,$​
其中​$a = 5,$​​$b = -2,$​​$c = -1,$​
​$b^2-4ac=(-2)^2-4×5×(-1)=4 + 20 = 24。$​
则​$t=\frac {-(-2)\pm \sqrt {24}}{2×5}=\frac {2\pm 2\sqrt {6}}{10}=\frac {1\pm \sqrt {6}}{5},$​
所以​$t_{1}=\frac {1+\sqrt {6}}{5},$​​$t_{2}=\frac {1-\sqrt {6}}{5}。$​
解:根据题意,得$(3m^{2}+4m - 3)+(-m^{2}+m - 30)=0,$
即$2m^{2}+5m - 33 = 0,$其中$a = 2,$$b = 5,$$c = -33,$$b^{2}-4ac=5^{2}-4×2×(-33)=25 + 264 = 289。$
则$m=\frac{-5\pm\sqrt{289}}{2×2}=\frac{-5\pm17}{4},$
所以$m_{1}=\frac{-5 + 17}{4}=3,$$m_{2}=\frac{-5 - 17}{4}=-\frac{11}{2}。$
解:一元二次方程​$x^2-11x + 30 = 0,$​
其中​$a = 1,$​​$b = -11,$​​$c = 30,$​​$b^2-4ac=(-11)^2-4×1×30 = 121 - 120 = 1。$​
则​$x=\frac {-(-11)\pm \sqrt {1}}{2×1}=\frac {11\pm 1}{2},$​所以​$x_{1}=6,$​​$x_{2}=5。$​
​$ $​当等腰三角形​$ABC$​的底边长为​$5、$​腰长为​$6$​时,底边上的高
​$h=\sqrt {6^2-(\frac {5}{2})^2}=\sqrt {36-\frac {25}{4}}=\sqrt {\frac {144 - 25}{4}}=\sqrt {\frac {119}{4}}=\frac {\sqrt {119}}{2},$​
面积​$S=\frac {1}{2}×5×\frac {\sqrt {119}}{2}=\frac {5\sqrt {119}}{4};$​
​$ $​当等腰三角形​$ABC$​的底边长为​$6、$​腰长为​$5$​时,底边上的高
​$h=\sqrt {5^2-(\frac {6}{2})^2}=\sqrt {25 - 9}=\sqrt {16}=4,$​
面积​$S=\frac {1}{2}×6×4 = 12。$​
综上所述,​$\triangle ABC$​的面积为​$\frac {5\sqrt {119}}{4}$​或​$12。$​