解:一元二次方程$x^2-11x + 30 = 0,$
其中$a = 1,$$b = -11,$$c = 30,$$b^2-4ac=(-11)^2-4×1×30 = 121 - 120 = 1。$
则$x=\frac {-(-11)\pm \sqrt {1}}{2×1}=\frac {11\pm 1}{2},$所以$x_{1}=6,$$x_{2}=5。$
$ $当等腰三角形$ABC$的底边长为$5、$腰长为$6$时,底边上的高
$h=\sqrt {6^2-(\frac {5}{2})^2}=\sqrt {36-\frac {25}{4}}=\sqrt {\frac {144 - 25}{4}}=\sqrt {\frac {119}{4}}=\frac {\sqrt {119}}{2},$
面积$S=\frac {1}{2}×5×\frac {\sqrt {119}}{2}=\frac {5\sqrt {119}}{4};$
$ $当等腰三角形$ABC$的底边长为$6、$腰长为$5$时,底边上的高
$h=\sqrt {5^2-(\frac {6}{2})^2}=\sqrt {25 - 9}=\sqrt {16}=4,$
面积$S=\frac {1}{2}×6×4 = 12。$
综上所述,$\triangle ABC$的面积为$\frac {5\sqrt {119}}{4}$或$12。$