解:对于方程$x^{2}+\frac{1}{2}=\frac{5}{2}x,$
移项得$x^{2}-\frac{5}{2}x=-\frac{1}{2},$
配方:$x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{1}{2}+\frac{25}{16},$
即$(x - \frac{5}{4})^{2}=\frac{17}{16},$
开方得$x - \frac{5}{4}=\pm\frac{\sqrt{17}}{4},$
$x=\frac{5}{4}\pm\frac{\sqrt{17}}{4},$
解得$x_{1}=\frac{\sqrt{17}}{4}+\frac{5}{4},$$x_{2}=-\frac{\sqrt{17}}{4}+\frac{5}{4}。$