解:对于方程$x^{2}+\frac{1}{2}=\frac{3}{2}x,$
移项得$x^{2}-\frac{3}{2}x=-\frac{1}{2},$
配方:$x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16},$
即$(x - \frac{3}{4})^{2}=\frac{1}{16},$
开方得$x - \frac{3}{4}=\pm\frac{1}{4},$
$x=\frac{3}{4}\pm\frac{1}{4},$
解得$x_{1}=1,$$x_{2}=\frac{1}{2}。$