解:$(1) $由题意得,矩阵$\begin {pmatrix}4&1&5\\3&-2&3\end {pmatrix}$对应的方
程组为$\begin {cases}4x + y = 5\\3x - 2y = 3\end {cases},$解得$\begin {cases}x=\dfrac {13}{11}\\y =\dfrac {3}{11}\end {cases},$
所以矩阵$\begin {pmatrix}4&1&5\\3&-2&3\end {pmatrix}$对应的方程组的解
为$\begin {cases}x=\dfrac {13}{11}\\y =\dfrac {3}{11}\end {cases}。$
$(2) $根据题意得$\begin {cases}x + y + tz = 3①\\2x - y + mz = 2②\end {cases},$
$①×1+②$得$4x + y+(2t + m)z = 8。$
因为$4x + y - z$为定值,
所以$2t + m = - 1。$