电子课本网 第87页

第87页

信息发布者:
解:解方程组​$\begin {cases}x + y=\dfrac {4}{3}\\x - y=\dfrac {6}{5}\end {cases}$​
两式相加得:​$2x=\frac {4}{3}+\frac {6}{5},$​解得​$x=\frac {19}{15}。$​
两式相减得:​$2y=\frac {4}{3}-\frac {6}{5},$​解得​$y=\frac {1}{15}。$​
​$ $​即原方程组的解为​$\begin {cases}x=\dfrac {19}{15}\\y =\dfrac {1}{15}\end {cases}。$​
​$ $​将​$\begin {cases}x + y=\dfrac {4}{3}\\x - y=\dfrac {6}{5}\end {cases}$​代入原方程组得
​$\begin {cases}\dfrac {1}{3}b-\dfrac {12}{5}a=-\dfrac {2}{15}\\2a - b=-\dfrac {4}{3}\end {cases},$​解得:​$\begin {cases}{a=\dfrac {1}{3}}\\{b = 2}\end {cases}$​
解:​$\begin {cases}x + ay = b&①\\2x + 3y = 4&②\end {cases}$​
​$ ①×2$​得​$2x + 2ay = 2b。$​
由题意知,当​$2a = 3$​且​$2b\neq 4$​时方程组无解。
​$ $​由​$2a = 3$​解得​$a=\frac {3}{2},$​由​$2b\neq 4$​解得​$b\neq 2。$​
​$ $​所以​$a,b$​需满足的条件是​$a=\frac {3}{2}$​且​$b\neq 2。$​
解:将方程​$2x-3ay = 4 + b$​两边同乘​$2$​得
​$4x-6ay = 8 + 2b。$​
​$ $​用​$4x-6ay = 8 + 2b$​与​$4x-(2a - 1)y = 18$​相减得:
​$ (-4a - 1)y=2b - 10。$​
因为方程组有无数组解,则
​$-4a - 1 = 0$​且​$2b - 10 = 0。$​
所以​$a=-\frac {1}{4},$​​$b = 5。$​
解:​$\begin {cases}x + 2y = 6&①\\2x - 2y+mx = 8&②\end {cases}$​
① + ②得:​$x + 2y+2x - 2y+mx = 6 + 8,$​
即​$(3 + m)x = 14,$​所以​$x=\frac {14}{3 + m}。$​
​$ $​由​$①$​得​$y = 3-\frac {x}{2}。$​
因为方程组有整数解,且​$m $​是整数,​$x$​是偶数,
所以​$3 + m=\pm 1$​或​$3 + m=\pm 7$​
​$ $​当​$3 + m = 1$​时,​$m=-2,$​此时
​$x = 14,$​​$y = 3 - 7=-4;$​
​$ $​当​$3 + m=-1$​时,​$m=-4,$​此时
​$x=-14,$​​$y = 3 + 7 = 10;$​
​$ $​当​$3 + m = 7$​时,​$m = 4,$​此时
​$x = 2,$​​$y = 3 - 1 = 2;$​
​$ $​当​$3 + m=-7$​时,​$m=-10,$​此时
​$x=-2,$​​$y = 3 + 1 = 4;$​
综上,整数​$m $​的值为​$-2$​或​$-4$​或​$-10$​或​$4。$​