解:$\begin {cases}x + 2y = 6&①\\2x - 2y+mx = 8&②\end {cases}$
① + ②得:$x + 2y+2x - 2y+mx = 6 + 8,$
即$(3 + m)x = 14,$所以$x=\frac {14}{3 + m}。$
$ $由$①$得$y = 3-\frac {x}{2}。$
因为方程组有整数解,且$m $是整数,$x$是偶数,
所以$3 + m=\pm 1$或$3 + m=\pm 7$
$ $当$3 + m = 1$时,$m=-2,$此时
$x = 14,$$y = 3 - 7=-4;$
$ $当$3 + m=-1$时,$m=-4,$此时
$x=-14,$$y = 3 + 7 = 10;$
$ $当$3 + m = 7$时,$m = 4,$此时
$x = 2,$$y = 3 - 1 = 2;$
$ $当$3 + m=-7$时,$m=-10,$此时
$x=-2,$$y = 3 + 1 = 4;$
综上,整数$m $的值为$-2$或$-4$或$-10$或$4。$