解:$ (1)$原式$=3×(3^3)^{m}\div (3^2)^{m}$
$ =3×3^{3m}\div 3^{2m}$
$=3^{1 + 3m-2m}$
$=3^{m + 1}$
$ $因为$3^{m + 1}=3^{16},$
所以$m + 1 = 16,$即$m = 15$
$ (2)a^{3x-2y}=a^{3x}\div a^{2y}=(a^{x})^3\div (a^{y})^2$
$=(-2)^3\div 3^2=-\frac {8}{9}$
$ (3)$原式$=9(x^{2n})^3-4(x^{2n})^2$
$=9×4^3-4×4^2$
$= 512$