解:$(1)$根据题意,
$(x,kx)*(y, - y)=x^2+(-y)^2-kx·y$
$=x^2-kxy + y^2$
$ $因为$(x,kx)*(y, - y)$是一个完全平方式,
所以$-kxy=\pm 2xy,$解得$k = \pm 2。$
$ (2)$根据题意,
$(3x + y,2x^2+3y^2)*(3,x - 3y)$
$=(3x + y)^2+(x - 3y)^2-3(2x^2+3y^2)$
$ =(9x^2+6xy + y^2)+(x^2-6xy + 9y^2)-(6x^2+9y^2)$
$=4x^2+y^2=84。$
$ $因为$2x + y = 10,$
所以$(2x + y)^2=4x^2+4xy + y^2=100,$
所以$4xy=100 - 84 = 16,$
所以$xy = 4。$
$ (3)$由$ (2)$可知,$2x + y = 10,$$xy = 4。$
$ $因为四边形$ABCD$和四边形$CEFG $均为长方形,
所以$CD = AB = 2x,$$BC = AD = 8x,$
$CG = EF = 4y,$$CE = FG = y,$
所以$DE = 2x - y,$$BG = 8x - 4y。$
所以阴影部分的面积为
$S = S_{\triangle BCD}-S_{\triangle BFG}-S_{\triangle DEF}-S_{\triangle CEG}$
$=\frac {1}{2}BC·CD-\frac {1}{2}BG·FG-\frac {1}{2}EF·DE-\frac {1}{2}CG·CE$
$ =\frac {1}{2}×8x·2x-\frac {1}{2}(8x - 4y)·y-\frac {1}{2}×4y(2x - y)-\frac {1}{2}×4y·y$
$ =8x^2-4xy + 2y^2-4xy + 2y^2-2y^2$
$=8x^2-8xy + 2y^2$
$=2(4x^2+4xy + y^2)-16xy$
$ $因为$(2x + y)^2=4x^2+4xy + y^2,$
所以原式$=2×10^2-16×4 = 136。$