$解:过点A作AF⊥ED,垂足为F$
$由题意得:ED⊥BD,AB=FD=6.8m,$
$AF=BD,AF//BD$
$∴∠FAC=∠ACB=22°$
$在Rt△ABC中,BC=\frac {AB}{tan{22}°}≈\frac {6.8}{\frac {2}{5}}=17(\mathrm {m})$
$设CD=x\ \mathrm {m}$
$∴AF=BD=BC+CD=(x+17)m$
$在Rt△ECD中,∠ECD=58°$
$∴ED=CD•tan{58}°≈\frac {8}{5}x(\mathrm {m})$
$在Rt△EAF中,∠EAF=37°$
$∴EF=AF•tan{37}°≈\frac {3}{4}(x+17)m$
$∵EF+DF=ED$
$∴\frac {3}{4}(x+17)+6.8=\frac {8}{5}x$
$解得:x=23$
$∴DE=\frac {8}{5}x=36.8(\mathrm {m})$
$∴建筑物DE的高度约为36.8m$