$ 解:(1)由题意,得PQ⊥AE,PQ=2.6m,$
$AB=CD=EQ=1.6m,AE=BQ=4m,$
$AC=BD=3m,$
$∴CE=1m,PE=1m,∠CEP=90°,$
$∴CE=PE,$
$∴β=∠PCE=45°,tanα=tan∠PAE=\frac{PE}{AE}=\frac{1}{4}$
$(2)∵CE=PE=1m,∠CEP=90°,$
∴CP=\sqrt{2}m.\过点C作CH⊥AP于点H.
$∵tanα=tan∠PAE=\frac{CH}{AH}=\frac{1}{4},$
$∴设CH=xm,则AH=4xm,$
$在Rt△AHC中,x²+(4x)²=AC²=9,$
$解得x=\frac{3\sqrt{17}}{17}(负值已舍去),$
$∴CH=\frac{3\sqrt{17}}{17}m$
$∴sin∠APC=\frac{CH}{CP}=\frac{\frac{3\sqrt{17}}{17}}{\sqrt{2}}=\frac{3\sqrt{34}}{34}.$