$解:延长AD、CB交于点F$
$∵CD平分 ∠ACB$
$∴∠ACD=∠FCD$
$∵AD⊥CD$
$∴∠ADC=∠FDC=90°$
$在△ACD和△FCD中$
$\begin{cases}{ ∠ACD=∠FCD }\ \\ { CD=CD } \\{∠ADC=∠FDC } \end{cases}$
$∴ △ACD≌△FCD (ASA),∴AD=FD,AC=FC=20$
$∴BF= CF-BC=20-14=6$
$∵AD=FD,E为AB中点,∴DE为△ABF的中位线$
$∴DE=\frac{1}{2}BF=3,故DE的长为3$