$ \begin{aligned} 解:原式&=[\frac{(a+2)(a-2)}{(a-2)²}+\frac{1}{a-2}]·\frac{a(a-2)}{2} \\ &=(\frac{a+2}{a-2}+\frac{1}{a-2})·\frac{a(a-2)}{2} \\ &=\frac{a+3}{a-2}·\frac{a(a-2)}{2} \\ &=\frac{a(a+3)}{2} \\ &=\frac{a²+3a}{2}: \\ \end{aligned}$
$∵a²+3a-2=0,∴a²+3a=2.∴原式=\frac{2}{2}=1.$