电子课本网 第86页

第86页

信息发布者:
$ \begin{aligned}解:原式&=\frac{a²+2-3}{a+1} \\ &=\frac{(a+1)(a-1)}{a+1} \\ &=a-1. \\ \end{aligned}$
$ \begin{aligned}解:原式&=[\frac{4m+5}{m+1}+\frac{(m-1)(m+1)}{m+1}]·\frac{m+1}{m+2} \\ &=\frac{m^{2} +4m+4}{m+1}·\frac{m+1}{m+2} \\ &=\frac{(m+2)^{2} }{m+1}·\frac{m+1}{m+2} \\ &=m+2. \\ \end{aligned}$
$ \begin{aligned}解:原式&=(\frac {3x}{x-1}-\frac {x}{x+1})· \frac{x²-1}{x} \\ &=\frac{3x}{x-1}·\frac{x²-1}{x}-\frac{x}{x+1}·\frac{x²-1}{x} \\ &=3(x+1)-(x-1) \\ &=3x+3-x+1 \\ &=2x+4. \\ \end{aligned}$
$解:方程变形,得\frac{1}{2(x-2)}+\frac{1}{2}=\frac{-3}{x-2},\ $
$去分母,得1+(x-2)=-6,\ $
$去括号,得1+x-2=-6,\ $
$移项,得x=-6+2-1,\ $
$合并同类项,得x=-5.\ $
$检验:当x=-5时,2(x-2)≠0,\ $
$∴原分式方程的解为x=-5.\ $
$ \begin{aligned} 解:原式&=[\frac{(a+2)(a-2)}{(a-2)²}+\frac{1}{a-2}]·\frac{a(a-2)}{2} \\ &=(\frac{a+2}{a-2}+\frac{1}{a-2})·\frac{a(a-2)}{2} \\ &=\frac{a+3}{a-2}·\frac{a(a-2)}{2} \\ &=\frac{a(a+3)}{2} \\ &=\frac{a²+3a}{2}: \\ \end{aligned}$
$∵a²+3a-2=0,∴a²+3a=2.∴原式=\frac{2}{2}=1.$
$ \begin{aligned}解:原式&=(a- \frac{a^{2} }{a²-1}) ·\frac{a²-1}{a²} \\ &=a ·\frac{a²-1}{a²}- \frac{a^{2} }{a²-1}·\frac{a²-1}{a²} \\ &=\frac{a²-1}{a}-1 \\ &=\frac{a²-a-1}{a}. \\ \end{aligned}$
$∵a²-1≠0,a≠0,∴a≠±1,a≠0,$
$∴a=2, $
$∴原式=\frac{2²-2-1}{2}=\frac {1}{2}.$
$ \begin{aligned} 解:原式&=(\frac{x-2}{x-2}+\frac{1}{x-2})· \frac{(x-2)^{2} }{x-1} \\ &=\frac{x-2+1}{x-2}·\frac{(x-2)^{2} }{x-1} \\ &=x-2. \\ \end{aligned}$
$∵x-2≠0,x-1≠0,∴x≠2且x≠1. $
$又-1<x≤2,且x为整数,$
$∴x可以取0. $
$∴当x=0时,原式=0-2=-2.$