解:(1)由题意,得抛物线过点$A(-4,0),$$B(4,0),$$D(-3,4),$
因为抛物线与$x$轴的两个交点的横坐标分别是$-4$和$4,$所以设抛物线对应的函数解析式为$y = a(x + 4)(x - 4)。$
把$D(-3,4)$代入$y = a(x + 4)(x - 4),$得$4 = a(-3 + 4)\times(-3 - 4),$
即$4 = a\times1\times(-7),$
解得$a = -\frac{4}{7}。$
所以抛物线对应的函数解析式为$y = -\frac{4}{7}(x + 4)(x - 4)=-\frac{4}{7}(x^{2}-16)=-\frac{4}{7}x^{2}+\frac{64}{7}。$
(2)令$x = 0,$得$y = \frac{64}{7},$即点$E$的坐标为$(0,\frac{64}{7}),$
所以门高$OE=\frac{64}{7}\text{ m}。$