解:由题意,设抛物线对应的函数解析式为$y = ax^{2}+k。$
将$(1,-2),$$(2,3)$代入$y = ax^{2}+k,$可得方程组$\begin{cases}a + k = -2\\4a + k = 3\end{cases}$
用$4a + k = 3$减去$a + k = -2,$得:
$(4a + k)-(a + k)=3-(-2)$
$4a + k - a - k = 3 + 2$
$3a = 5$
$a=\frac{5}{3}$
把$a=\frac{5}{3}$代入$a + k = -2,$得$\frac{5}{3}+k = -2,$$k=-2-\frac{5}{3}=-\frac{6}{3}-\frac{5}{3}=-\frac{11}{3}。$
所以抛物线对应的函数解析式为$y=\frac{5}{3}x^{2}-\frac{11}{3}。$