$ \frac {-n±\sqrt {p}}{m}$
$ 解:x^{2}=4$ $x_{1}=2,x_{2}=-2$
$解:x^{2}=\frac {5}{4}$ $x_{1}=\frac{\sqrt{5}}{2},x_{2}= −\frac{\sqrt{5}}{2}$
$解:x^{2}=\frac {7}{16}$ $x_{1}=\frac{\sqrt{7}}{4},x_{2}=−\frac{\sqrt{7}}{4}$
$解:(x-3)^{2}=9$ $\ \ \ \ \ x-3=±3$ $x_{1}=0,x_{2}=6$
$解: x+3=±2$ $x_{1}=−3+\sqrt{2},x_{2}=−3− \sqrt{2}$
$解:(x-1)^{2}=6$ $ x-1=±\sqrt {6}$ $x_{1}=1+\sqrt{6},x_{2}=1−\sqrt{6}$
|
|