电子课本网 第18页

第18页

信息发布者:
解:原方程$\frac{1}{2}(3y - 1)^2 = 8,$两边同时乘以$2$化为$(3y - 1)^2 = 16,$
根据直接开平方法,可得$3y - 1 = \pm4,$
当$3y - 1 = 4$时,$3y=4 + 1,$$3y = 5,$解得$y_1=\frac{5}{3};$
当$3y - 1 = -4$时,$3y=-4 + 1,$$3y = -3,$解得$y_2 = -1。$
解:对于方程$2x^2 - 3x - 3 = 0,$两边同时除以$2$得$x^2 - \frac{3}{2}x - \frac{3}{2} = 0,$
移项得$x^2 - \frac{3}{2}x = \frac{3}{2},$
配方:在等式两边加上一次项系数一半的平方,即$(\frac{-\frac{3}{2}}{2})^2=\frac{9}{16},$
$x^2 - \frac{3}{2}x+\frac{9}{16}=\frac{3}{2}+\frac{9}{16},$
根据完全平方公式$(a - b)^2 = a^2 - 2ab + b^2,$可得$(x - \frac{3}{4})^2 = \frac{24 + 9}{16}=\frac{33}{16},$
根据直接开平方法,$x - \frac{3}{4} = \pm\frac{\sqrt{33}}{4},$
当$x - \frac{3}{4} = \frac{\sqrt{33}}{4}$时,$x_1=\frac{3 + \sqrt{33}}{4};$
当$x - \frac{3}{4} = -\frac{\sqrt{33}}{4}$时,$x_2=\frac{3 - \sqrt{33}}{4}。$
解:对于方程$3x^2 + 3x - 1 = 0,$其中$a = 3,$$b = 3,$$c = -1,$
根据一元二次方程判别式$\Delta=b^2 - 4ac,$可得$\Delta = 3^2 - 4\times3\times(-1)=9 + 12 = 21>0,$
由求根公式$x=\frac{-b\pm\sqrt{\Delta}}{2a},$可得$x=\frac{-3\pm\sqrt{21}}{2\times3}=\frac{-3\pm\sqrt{21}}{6},$
所以$x_1=\frac{-3 + \sqrt{21}}{6},$$x_2=\frac{-3 - \sqrt{21}}{6}。$
解:原方程$(x - 1)(x + 2) = 2(x + 2),$移项得$(x - 1)(x + 2)-2(x + 2)=0,$
提取公因式$(x + 2)$得$(x + 2)(x - 1 - 2)=0,$即$(x + 2)(x - 3)=0,$
则$x + 2 = 0$或$x - 3 = 0,$
当$x + 2 = 0$时,解得$x_1=-2;$
当$x - 3 = 0$时,解得$x_2 = 3。$
解:
(1) 对于方程$x^2 - 5x - 14 = 0,$分解因式得$(x + 2)(x - 7)=0,$
则$x + 2 = 0$或$x - 7 = 0,$
当$x + 2 = 0$时,解得$x_1=-2;$
当$x - 7 = 0$时,解得$x_2 = 7。$
(2) 对于方程$2x^2 + x - 6 = 0,$分解因式得$(2x - 3)(x + 2)=0,$
则$2x - 3 = 0$或$x + 2 = 0,$
当$2x - 3 = 0$时,$2x=3,$解得$x_1=\frac{3}{2};$
当$x + 2 = 0$时,解得$x_2=-2。$
(3) 对于方程$4x^2 - 8x - 5 = 0,$分解因式得$(2x - 5)(2x + 1)=0,$
则$2x - 5 = 0$或$2x + 1 = 0,$
当$2x - 5 = 0$时,$2x=5,$解得$x_1=\frac{5}{2};$
当$2x + 1 = 0$时,$2x=-1,$解得$x_2=-\frac{1}{2}。$