解:对于方程$3(x - 1)(x + 2)=9x - 4,$
展开得$3(x^{2}+2x - x - 2)=9x - 4,$
即$3(x^{2}+x - 2)=9x - 4,$
$3x^{2}+3x - 6 = 9x - 4,$
移项得$3x^{2}+3x - 9x - 6 + 4 = 0,$
$3x^{2}-6x - 2 = 0,$
两边同时除以$3$得$x^{2}-2x-\frac{2}{3}=0,$
移项得$x^{2}-2x=\frac{2}{3},$
配方:$x^{2}-2x + 1=\frac{2}{3}+1,$即$(x - 1)^{2}=\frac{5}{3},$
两边开平方得$x - 1=\pm\frac{\sqrt{15}}{3},$
移项得$x=1\pm\frac{\sqrt{15}}{3},$
所以$x_{1}=1+\frac{\sqrt{15}}{3},$$x_{2}=1-\frac{\sqrt{15}}{3}。$