电子课本网
›
第6页
第6页
信息发布者:
D
D
C
B
36
$\pm3$
$-\frac{1}{2}$或$\frac{3}{2}$
解:
$\begin{aligned}5x^{2}-2&=18\\5x^{2}&=18 + 2\\5x^{2}&=20\\x^{2}&=4\\x&=\pm2\end{aligned}$
即$x_1 = 2,$$x_2 = -2$
解:
$\begin{aligned}(x+\sqrt{5})(x - \sqrt{5})&=1\\x^{2}-(\sqrt{5})^{2}&=1\\x^{2}-5&=1\\x^{2}&=6\\x&=\pm\sqrt{6}\end{aligned}$
即$x_1=\sqrt{6},$$x_2 = -\sqrt{6}$
解:
$\begin{aligned}(4x + 1)^{2}&=16\\4x+1&=\pm4\\当4x + 1 = 4时,4x&=3,x_1=\frac{3}{4}\\当4x + 1 = -4时,4x&=-5,x_2=-\frac{5}{4}\end{aligned}$
解:
$\begin{aligned}(2x + 3)^{2}&=49\\2x+3&=\pm7\\当2x + 3 = 7时,2x&=4,x_1 = 2\\当2x + 3 = -7时,2x&=-10,x_2=-5\end{aligned}$
解:
$\begin{aligned}4x^{2}+10&=1\\4x^{2}&=1 - 10\\4x^{2}&=-9\\x^{2}&=-\frac{9}{4}\end{aligned}$
因为任何实数的平方都大于等于0,所以此方程无实数根。
解:
$\begin{aligned}y^{2}-10y + 25&=4\\(y - 5)^{2}&=4\\y-5&=\pm2\\当y - 5 = 2时,y_1 = 7\\当y - 5 = -2时,y_2 = 3\end{aligned}$
D
上一页
下一页