解:$ (1)$设正方形纸片$A,$$B$的边长分别为$a,$$b,$
由题意得$\begin {cases}2a = 3b\\a + b = 10\end {cases},$解得:$\begin {cases}{a=6}\\{b=4}\end {cases}$
答:正方形纸片$A,$$B$的边长分别为$6,$$4。$
$ (2)$设正方形$C,$$D$的边长分别为$c,$$d,$则
由图$②$得$(c - d)^2=4,$即$c^2-2cd + d^2=4,$
由图$③$得$(c + d)^2-c^2-d^2=48,$即$2cd = 48,$
所以$c^2+d^2-48 = 4,$
所以$c^2+d^2=52,$即正方形$C,$$D$的面积之和为$52。$