解:$ (2)①$由折叠可知$∠AOC=∠A'OC,$
∴$∠AOA' = 2∠AOC,$
由折叠知,$∠BOD=∠B'OD,$
∴$∠BOB' = 2∠BOD。$
∵点$B'$落在$OA'$上,
∴$∠AOA'+∠BOB' = 180°,$
∴$2∠AOC + 2∠BOD = 180°,$
∴$∠AOC+∠BOD = 90°,$即$∠COD = 90°。$
②由折叠可知,$∠AOA' = 2∠AOC,$
$∠BOB' = 2∠BOD。$
∵$∠AOC = 44°,$$∠BOD = 61°,$
∴$∠AOA' = 2∠AOC = 2×44°=88°,$
$∠BOB' = 2∠BOD = 2×61°=122°,$
∴$∠A'OB'=∠AOA'+∠BOB'-180°$
$=88°+122°-180°=30°。$