解:$ (1)$由题意得,$S_{1}=(2m + 4)(m + 2)$
$=2\ \mathrm {m^2}+4m+4m + 8=2\ \mathrm {m^2}+8m + 8;$
$ S_{2}=\frac {1}{2}(2m + 4)(m - 2)$
$=\frac {1}{2}(2\ \mathrm {m^2}-4)=\mathrm {m^2}-4。$
$ (2)$是定值。
由题意得,$S_{3}=(3m + 4)^2=9\ \mathrm {m^2}+24m + 16,$
$ \begin {aligned}&S_{3}-3(S_{1}+S_{2})\\=&9\ \mathrm {m^2}+24m + 16-3(2\ \mathrm {m^2}+8m + 8+\mathrm {m^2}-4)\\=&9\ \mathrm {m^2}+24m + 16-3(3\ \mathrm {m^2}+8m + 4)\\=&9\ \mathrm {m^2}+24m + 16-9\ \mathrm {m^2}-24m-12\\=&4\end {aligned}$