电子课本网 第19页

第19页

信息发布者:
C
​$-\frac {a}{a+1}$​
解:​$(1)$​∵​$S_{1}=\frac 1a,$​∴​$S_{2}=-S_{1}-1=-\frac 1a-1=-\frac {a+1}a$​
∴​$S_{3}=\frac 1{S_{2}}=-\frac {a}{a+1}$​
​$(3)$​∵​$S_{1}=\frac 1{a}$​
∴​$S_{2}=-S_{1}-1=-\frac 1{a}-1=-\frac {a+1}{a}$​
∴​$S_{3}=\frac 1{S_{2}}=-\frac {a}{a+1}$​
∴​$S_{4}=-S_{3}-1=\frac {a}{a+1}-1=\frac {a-a-1}{a+1}=-\frac 1{a+1}$​
∴​$S_{5}=\frac 1{S_{4}}=-(a+1)$​
∴​$S_{6}=-S_{5}-1=a+1-1=a$​
∴​$S_{7}=\frac 1{S_{6}}=\frac 1{a}$​
······
∴​$S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}$​
​$=\frac 1{a}+(-\frac {a+1}{a})+ (-\frac {a}{a+1})+(-\frac 1{a+1})+[-(a+1)]+a=-3$​
∵​$2022÷6=337$​
∴​$S_{1}+S_{2}+S_{3}+···+S_{2022}=(-3)×337=-1011$​
​$\frac {x+n+1}{x+n+2}-\frac {x+n}{x+n+1}=\frac 1{x+n+1}-\frac 1{x+n+2}$​
证明:​$(3)\frac {x+n+1}{x+n+2}-\frac {x+n}{x+n+1}$​
​$=\frac {(x+n+2)-1}{x+n+2}-\frac {(x+n+1)-1}{x+n+1}$​
​$=1-\frac 1{x+n+2}-(1-\frac 1{x+n+1})$​
​$=1-\frac 1{x+n+2}-1+\frac 1{x+n+1}$​
​$=\frac 1{x+n+1}-\frac 1{x+n+2}$​
即​$\frac {x+n+1}{x+n+2}-\frac {x+n}{x+n+1}=\frac 1{x+n+1}-\frac 1{x+n+2}$​
​$\frac {x+6}{x+7}-\frac {x+5}{x+6}=\frac 1{x+6}-\frac 1{x+7}$​