解:$(1)$∵$S_{1}=\frac 1a,$∴$S_{2}=-S_{1}-1=-\frac 1a-1=-\frac {a+1}a$
∴$S_{3}=\frac 1{S_{2}}=-\frac {a}{a+1}$
$(3)$∵$S_{1}=\frac 1{a}$
∴$S_{2}=-S_{1}-1=-\frac 1{a}-1=-\frac {a+1}{a}$
∴$S_{3}=\frac 1{S_{2}}=-\frac {a}{a+1}$
∴$S_{4}=-S_{3}-1=\frac {a}{a+1}-1=\frac {a-a-1}{a+1}=-\frac 1{a+1}$
∴$S_{5}=\frac 1{S_{4}}=-(a+1)$
∴$S_{6}=-S_{5}-1=a+1-1=a$
∴$S_{7}=\frac 1{S_{6}}=\frac 1{a}$
······
∴$S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}$
$=\frac 1{a}+(-\frac {a+1}{a})+ (-\frac {a}{a+1})+(-\frac 1{a+1})+[-(a+1)]+a=-3$
∵$2022÷6=337$
∴$S_{1}+S_{2}+S_{3}+···+S_{2022}=(-3)×337=-1011$