$解:原分式方程可化为,$
$(1+{\frac {1} {x-1}})-(1+{\frac {1} {x-2}})=(1+{\frac {1} {x-4}})-(1+{\frac {1} {x-5}})$
${\frac {1} {x-1}}-{\frac {1} {x-2}}={\frac {1} {x-4}}-{\frac {1} {x-5}}$
${\frac {(x-2)-(x-1)} {(x-1)(x-2)}}={\frac {(x-5)-(x-4)} {(x-4)(x-5)}}$
${\frac {-1} {(x-1)(x-2)}={\frac {-1} {(x-4)(x-5)}}}$
${\frac {1} {(x-1)(x-2)}}={\frac {1} {(x-4)(x-5)}}$
$由(1)知,原分式方程的解为x=3$