$解:∵ 正方形OABC的边长为1$
$∴ OC=OA=AB=BC=1,∠OCB=90°,$
$∠COB=45°,OC//AB$
$在Rt△OBC中,∵ OC=BC=1$
$∴ OB={\sqrt {{OC}^2+{BC}^2}}={\sqrt {2}}$
$∵ OD=OC=1$
$∴ BD=\sqrt {2}-1,$
$∠OCD=∠ODC=\frac {180°-45°}2=67.5°$
$∴ ∠BDE=∠ODC=67.5°$
$∵ OC//AB$
$∴ ∠BED=∠OCD=67.5°$
$∴ ∠BED=∠BDE$
$∴ BD=BE=\sqrt {2}-1,AE=1-(\sqrt {2}-1)=2-\sqrt {2}$
$∴ E(1,2-\sqrt {2})$