$解:作BG⊥AE,垂足即为点G,如图所示$
$∵ 四边形ABCD为正方形$
$∴ ∠DAB=90°,AD=AB$
$∵ DF⊥AE,BG⊥AE$
$∴ ∠DFA=∠AGB=90°$
$∴ ∠DAF+∠ADF=90°$
$∵ ∠DAF+∠GAB=90°$
$∴ ∠ADF=∠GAB$
$在△DAF和△ABG中,$
${{\begin{cases} { {∠DFA=∠AGB}} \\{∠ADF=∠GAB} \\ {AD=AB} \end{cases}}}$
$∴ △DAF≌△ABG(\mathrm {AAS})$