$解:设AE=x,则AB^2=2^2+x^2,AD^2=6^2+x^2$
$在Rt△ABD中,∵ AD^2+AB^2=BD^2$
$∴ 36+{x}^{2}+4+{x}^{2}={8}^{2}$
$解得,x=±2{\sqrt {3}}$
$∵ x>0$
$∴ x=2{\sqrt {3}}$
$∴ AB={\sqrt {{2}^{2}+{x}^{2}}}=4,AD={\sqrt {{6}^{2}+{x}^{2}}}=4{\sqrt {3}}$
$∴ 矩形ABCD的长为4\sqrt {3},宽为4$