$解:(2)设△ABC的姊妹三角形为△DEF,且DE=DF,如图$
$∵在△ABC中,AB=AC,∠A=30°,BC=\sqrt 6-\sqrt 2$
$∴∠B=∠C=75°$
$过点B作BG⊥AC,垂足为点G,设BG=x,则AB=AC=2x,AG=\sqrt 3x$
$∴CG=AC-AG=2x-\sqrt 3x=(2-\sqrt 3)x$
$在Rt△BGC中,BG^2+CG^2=BC^2$
$∴x^2+(2-\sqrt 3)^2x^2=(\sqrt 6-\sqrt 2)^2$
$∴x=1$
$∴AB=AC=2$
$①∠D=∠ABC=75°,DE=DF=BC=\sqrt 6-\sqrt 2$
$②当∠E=∠A=30°时,∠EDF=120°,EF=AB=2,如图$
$过点D作DH⊥EF,垂足为点H$
$∵DE=DF$
$∴EH=\frac 12EF=1$
$∴ED=\frac {EH}{cos 30°}=\frac {2\sqrt 3}3$
$∴△ABC的姊妹三角形的顶角为75°时,腰长为\sqrt 6-\sqrt 2$
$顶角为120°时,腰长为\frac {2\sqrt 3}3$