$解:(1)由题意AB=\sqrt {AC^2+BC^2}=\sqrt {13}$
$∴sin A=\frac {BC}{AB}=\frac {3\sqrt {13}}{13},cos B=\frac {BC}{AB}=\frac {3\sqrt {13}}{13}$
$(2)cos A=\frac {AC}{AB}=\frac {2\sqrt {13}}{13},sin B=\frac {AC}{AB}=\frac {2\sqrt {13}}{13}$
$(3)发现:sin A=cos (90°-∠A),cos A=sin (90°-∠A)$
$理由:∵sin A=\frac {∠A的对边}{斜边}=\frac ac,cos B=\frac {∠B的邻边}{斜边}=\frac ac$
$∴sin A=cos B=cos (90°-∠A)$