$解:连接OE,设扇形ODF 的半径为r$
$∵点E为圆的切点$
$∴∠OEB=90°$
$∴∠OEB=∠ACB$
$∵∠B为公共角$
$∴△OEB∽△ACB$
$∴\frac {OE}{AC}=\frac {OB}{AB}$
$∵AC=6\ \mathrm {cm},BC=8\ \mathrm {cm}$
$∴AB=10\ \mathrm {cm}$
$∴OB=\frac 53r,AO=10-\frac 53r$
$∵∠AOF=∠ACB,∠A为公共角$
$∴△AOF∽△ACB$
$∴\frac {AO}{AC}=\frac {OF}{BC},\frac {10-\frac 53r}6=\frac {r}8$
$∴r=\frac {120}{29}\ \mathrm {cm}$