电子课本网 第93页

第93页

信息发布者:
45°
60°
80
$​\frac {\sqrt{3}}{2}​$
$​\frac {\sqrt{6}}{6}​$
​$解:原式=(\frac {1}{2})²+(\frac {\sqrt{3}}{2})²-\sqrt{2}×\frac {\sqrt{2}}{2}$​
               ​  $=1-1$​
               ​  $=0$​
$​解:原式=\frac {\sqrt{3}}{3}+1-2×\frac {1}{2}+\sqrt{3}​$
$ ​=\frac {\sqrt{3}}{3}+1-1+\sqrt{3}​$
$ ​=\frac {4\sqrt{3}}{3}​$

$​解:原式=\frac {\frac {\sqrt{2}}{2}}{\frac {\sqrt{3}}{2}+1}-\frac {\frac {\sqrt{2}}{2}}{1-\frac {\sqrt{3}}{2}}​$
$​=\frac {\frac {\sqrt{2}×(1-\frac {\sqrt{3}}{2})}{2}}{\frac {1}{4}}-\frac {\frac {\sqrt{2}}{2}×(1-\frac {\sqrt{3}}{2})}{\frac {1}{4}}​$
$​=2\sqrt{2}×[(1-\frac {\sqrt{3}}{2})-(1+\frac {\sqrt{3}}{2})]​$
$​=2\sqrt{2}×(-\sqrt{3})​$
$​=-2\sqrt{6}​$

​$解:原式=2×\frac {1}{2}+\frac {1}{3}+1-2$​
                ​$=1+\frac {1}{3}-1$​
                ​$=\frac {1}{3}$​
$​解: (1)在Rt△ABC中​$
$​因为∠A=30°,∠C=90°,∠B=60°​$
$​因为a=4\sqrt{3}​$
$​所以b=\frac {a}{tan{30}°}=12,c=\frac {a}{sin{30}°}=8\sqrt{3}​$
$​(2)在Rt△ABC中​$
$​因为a= 6\sqrt{2},c=12,∠C = 90°​$
$​所以b=\sqrt{c²-a²}= 6\sqrt{2}​$
$​所以sinA=\frac {a}{c}=\frac {\sqrt{2}}{2},sinB=\frac {b}{c}=\frac {\sqrt{2}}{2}​$
$​所以∠A=45°,∠B=45°​$


解:过点​$A$​作​$AE⊥BD,$​交​$BD$​的延长线于点​$E ,$​如图所示
​$因为DB⊥BC, AE⊥DB$​
​$所以AE//BC,∠AED=∠DBC= 90°$​
​$所以∠EAD=∠C=30°, $​
​$所以△ADE∽△CDB$​
​$因为\frac {AD}{DC}=\frac {1}{2}$​
​$所以\frac {AE}{BC}=\frac {DE}{DB}=\frac {1}{2}$​
​$设DE=x ,则DB=2x, BE=3x$​
​$在Rt△ADE中$​
​$因为∠EAD=30°, DE=x$​
​$所以AE=\sqrt{3}x$​
​$所以tan∠ABD=\frac {AE}{BE}=\frac {\sqrt{3}x}{3x}=\frac {\sqrt{3}}{3}$