解:$(1)∠BOD-∠AON=15°$,理由如下:
由题意,得$∠BOD=∠AOB+∠AOD=45°+∠AOD$,
$∠AON=∠COD+∠AOD=30°+∠AOD$
∴$∠BOD-∠AON=45°+∠AOD-(30°+∠AOD)=15°$
$(2)$存在,由题意,得$∠BON=(6t)°$,$∠DON=30°+(3t)°$
当$OA$与$ON$重合时,$6t=45$,解得$t=\frac {15}{2}$
当$OB$与$OD$重合时,$6t=30+3t$,解得$t=10$
当$OB$与$OM$重合时,$6t=180$,解得$t=30$
$①$当$0≤t≤\frac {15}{2}$时,$∠AON=45°-(6t)°$,$∠BOD=30°+(3t)°-(6t)°=30°-(3t)°$
则$∠BOD+∠AON=75°-(9t)°=60°$,解得$t=\frac {5}{3}$
$②$当$\frac {15}{2}<t≤10$时,$∠AON=(6t)°-45°$,
$∠BOD=30°+(3t)°-(6t)°=30°-(3t)°$
则$∠BOD+∠AON=(3t)°-15°=60°$,解得$t=25($不符合题意,舍去);
$③$当$10<1≤30$时,$∠AON=(6t)°-45°$,$∠BOD=(6t)°-[30°+(3t)°]=(3t)°-30°$
则$∠BOD+∠AON=(9t)°-75°=60°$,解得$t=15$
综上所述,当$t $的值为$\frac {5}{3}$或$15$时,$∠BOD+∠AON=60°$