解:∵$A=5x²-mx+n$,$B=-3y²+2x-1$
∴$A+B=(5x²-mx+n)+(-3y²+2x-1)$
$=5x²-mx+n-3y²+2x-1=5x²-3y²+(2-m)x+(n-1)$
∵$A+B$中不含一次项和常数项
∴$2-m=0$,$n-1=0$
解得$m=2$,$n=1$
∵$2(\mathrm {m^2}n-1)-5\ \mathrm {m^2}n+4=2\ \mathrm {m^2}n-2-5\ \mathrm {m^2}n+4=-3m²n+2$
当$m=2$,$n=1$时,$-3\ \mathrm {m^2}n+2=-3×2^2×1+2=-12+2=-10$