$(1)①证明:∵∠BAC=∠DAE$
$∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE$
$在△ABD与△ACE中$
$\begin{cases}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{cases}$
$∴△ABD≌△ACE(\mathrm {SAS})$
$\ ②解:∵△ABD≌△ACE,∴∠B=∠ACE$
$∴∠B+∠ACB=∠ACE+∠ACB$
$∴∠BCE=∠B+∠ACB$
$又∠BAC=90°,∴∠B+∠ACB=90°,∴∠BCE=90°$
$(2)解:α+β=180°,理由:$
$由(1)①知△ABD≌△ACE,∴∠B=∠ACE$
$∴∠B+∠ACB=∠ACE+∠ACB,∴∠B+∠ACB=β$
$∵∠BAC+∠B+∠ACB=180°,∴α+β=180°$