$②∵AB⊥AC,AB=2,AC=4,$
$∴BC=2\sqrt {5} .$
$根据条件可知AD与BC之间的距离h为\frac{4\sqrt {5} }{5}.$
$如图①,当EF=AC时,四边形AECF是矩形,$
$AC=4,$
$∴AF= \sqrt{4^{2} -(\frac{4\sqrt {5} }{5})^{2} }=\frac{8\sqrt {5} }{5},$
$∴矩形AECF的面积=AF·h=\frac{32}{5}.$
$如图②,当EF=BD时,四边形BEDF是矩形,$
$BD=4\sqrt {2} ,$
$∴DF= \sqrt{(4\sqrt {2} )²-(\frac{4\sqrt {5} }{5})^{2} }=\frac{12\sqrt {15} }{5},$
$∴矩形BEDF的面积=DF·h=\frac{48}{5}.$
$综上,矩形的面积为\frac{32}{5}或\frac{48}{5.} $