$证明:(1)∵四边形ABCO是平行四边形,$
$∴AB//OC,∴∠BAO=∠AOF,$
$由旋转可知,∠BAO=∠OAF,AO=AF,$
$∴∠OAF=∠AOF,即AF=OF.$
$∵AO=AF,∴AF=OF=AO,$
$∴△AOF是等边三角形.\ $
$由题可知AB=CO=AD=4,$
$∵AD经过点O,点A、D在反比例函数$
$y=\frac{k}{x}的图像上,由反比例函数的$
$中心对称性,可得OA=OD=2,$
$过点A作x轴的垂线,垂足为H,$
$∵△AOF是等边三角形,$
$∴OH=1,AH=\sqrt{3},∴A(1,\sqrt {3} ),$
$∴k=\sqrt {3} .$
$解:(2)a= \frac{k}{x_{1}} ,b= \frac{k}{x_{2}} ,$
$∴m²= \frac{\frac{k}{x_{1}}+ \ \frac{k}{x_{2}}}{2k}= \frac{x_{1}+x_{2}}{2x_{1}x_{2}} ,$
$∴m² -n² = \frac{x_{1}+x_{2}}{2x_{1}x_{2}} -\frac{2}{x_{1}+x_{2}} = \frac{(x_{1}-x_{2})²}{2x_{1}x_{2}(x_{1}+x_{2})} \gt 0,$
$∴m\gt n\gt 0.$
$∵当x\gt 0时,y随x增大而减小,\ $
$\ ∴y_{1}\lt y_{2}.$