$解:∵\frac{Ax+B}{x+1}+\frac{C}{x-2}$
$=\frac{(Ax+B)(x-2)+C(x+1)}{(x+1)(x-2)}\ $
$=\frac{Ax²+(B+C-2A)x+C-2B}{(x+1)(x-2)}$
$=\frac{3}{(x+1)(x-2)},\ $
$∴\begin{cases}{ A=0, }\ \\ {B+C-2A=0,\ }\\{C-2B=3,} \end{cases}\ $
$解得\begin{cases}{ A=0, }\ \\ { B=-1, } \\{C=1.}\end{cases}\ $