电子课本网 第63页

第63页

信息发布者:
解:​$(1)\ \mathrm {a}(a-2b)+2b(a-2b)=(a+2b)(a-2b) $​
​$a^2-4b^2=(a+2b)(a-2b)$​
​$(2)$​当​$a=63.5m,$​​$b=18.25m$​时,
​$(a+2b)(a-2b)=(63.5+2×18.25)(63.5-2×18.25)$​
​$ =(63.5+36.5)(63.5-36.5)$​
​$ =2700(\mathrm {m^2})$​
​${\frac {1} {4}}\pi ab$​
C
解:​$(1)S_1={\frac {1} {2}}\pi r^2-2×{\frac {1} {2}}\pi {({\frac {1} {2}}r)}^2={\frac {1} {2}}\pi r^2-{\frac {1} {4}}\pi r^2={\frac {1} {4}}\pi r^2$​
​$(4)\ \mathrm S_2={\frac {1} {2}}\pi r^2-{\frac {1} {2}}\pi {({\frac {r+c} {2}})}^2-{\frac {1} {2}}\pi {({\frac {r-c} {2}})}^2$​
​$ ={\frac {1} {2}}\pi r^2-{\frac {1} {8}}\pi (r^2+2rc+c^2)-{\frac {1} {8}}\pi (r^2-2rc+c^2) $​
​$ ={\frac {1} {4}}\pi r^2-{\frac {1} {4}}\pi c^2$​
∵​$c>0$​
∴​$ S_1>S_2$​