$ \begin{aligned} 解:原式&=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)·(2^{32}+1)(2^{64}+1)(2^{128}+1)+1 \\ &=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)(2^{64}+1)·(2^{128}+1)+1 \\ \end{aligned}$
$\quad \quad \quad \quad ···$
$ \begin{aligned} \quad \quad \quad \quad &=2^{256}-1+1 \\ \quad \quad \quad \quad &=2^{256}. \\ \end{aligned}$